Beyond Loose LP-Relaxations: Optimizing MRFs by Repairing Cycles
نویسندگان
چکیده
This paper presents a new MRF optimization algorithm, which is derived from Linear Programming and manages to go beyond current state-of-the-art techniques (such as those based on graph-cuts or belief propagation). It does so by relying on a much tighter class of LP-relaxations, called cycle-relaxations. With the help of this class of relaxations, our algorithm tries to deal with a difficulty lying at the heart of MRF optimization: the existence of inconsistent cycles. To this end, it uses an operation called cycle-repairing. The goal of that operation is to fix any inconsistent cycles that may appear during optimization, instead of simply ignoring them as usually done up to now. The more the repaired cycles, the tighter the underlying LP relaxation becomes. As a result of this procedure, our algorithm is capable of providing almost optimal solutions even for very general MRFs with arbitrary potentials. Experimental results verify its effectiveness on difficult MRF problems, as well as its better performance compared to the state of the art.
منابع مشابه
Lifted Message Passing as Reparametrization of Graphical Models
Lifted inference approaches can considerably speed up probabilistic inference in Markov random fields (MRFs) with symmetries. Given evidence, they essentially form a lifted, i.e., reduced factor graph by grouping together indistinguishable variables and factors. Typically, however, lifted factor graphs are not amenable to offthe-shelf message passing (MP) approaches, and hence requires one to u...
متن کاملTighter Linear Program Relaxations for High Order Graphical Models
Graphical models with High Order Potentials (HOPs) have received considerable interest in recent years. While there are a variety of approaches to inference in these models, nearly all of them amount to solving a linear program (LP) relaxation with unary consistency constraints between the HOP and the individual variables. In many cases, the resulting relaxations are loose, and in these cases t...
متن کاملAn Analysis of Convex Relaxations for MAP Estimation of Discrete MRFs
The problem of obtaining the maximum a posteriori estimate of a general discrete Markov random field (i.e., a Markov random field defined using a discrete set of labels) is known to be NP-hard. However, due to its central importance in many applications, several approximation algorithms have been proposed in the literature. In this paper, we present an analysis of three such algorithms based on...
متن کاملExactness of Approximate MAP Inference in Continuous MRFs
Computing the MAP assignment in graphical models is generally intractable. As a result, for discrete graphical models, the MAP problem is often approximated using linear programming relaxations. Much research has focused on characterizing when these LP relaxations are tight, and while they are relatively well-understood in the discrete case, only a few results are known for their continuous ana...
متن کاملApproximate MAP Inference in Continuous MRFs
Computing the MAP assignment in graphical models is generally intractable. As a result, for discrete graphical models, the MAP problem is often approximated using linear programming relaxations. Much research has focused on characterizing when these LP relaxations are tight, and while they are relatively well-understood in the discrete case, only a few results are known for their continuous ana...
متن کامل